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Abstract
Neural representation can be induced without external stimulation, such as in mental imagery. Our previous study
found that imagined speaking and imagined hearing modulated perceptual neural responses in opposite
directions, suggesting motor-to-sensory transformation and memory retrieval as two separate routes that induce
auditory representation (Tian and Poeppel, 2013). We hypothesized that the precision of representation induced
from different types of speech imagery led to different modulation effects. Specifically, we predicted that the
one-to-one mapping between motor and sensory domains established during speech production would evoke a
more precise auditory representation in imagined speaking than retrieving the same sounds from memory in
imagined hearing. To test this hypothesis, we built the function of representational precision as the modulation of
connection strength in a neural network model. The model fitted the magnetoencephalography (MEG) imagery
repetition effects, and the best-fitting parameters showed sharper tuning after imagined speaking than imagined
hearing, consistent with the representational precision hypothesis. Moreover, this model predicted that different
types of speech imagery would affect perception differently. In an imagery-adaptation experiment, the catego-
rization of /ba/-/da/ continuum from male and female human participants showed more positive shifts towards the
preceding imagined syllable after imagined speaking than imagined hearing. These consistent simulation and
behavioral results support our hypothesis that distinct mechanisms of speech imagery construct auditory
representation with varying degrees of precision and differentially influence auditory perception. This study
provides a mechanistic connection between neural-level activity and psychophysics that reveals the neural
computation of mental imagery.

Key words: efference copy/corollary discharge; internal forward model; memory retrieval; mental imagery; pre-
diction; sensorimotor integration

Significance Statement

Our brain processes sensory information that we receive from the environment and mediates mental activity
such as imagination. How do mental and perceptual processes interact to shape our cognition? We
constructed a computational model that simulated how two types of imagery, imagined speaking and
imagined hearing, differentially modulated perception via two distinct neural pathways. This model further
predicted a choice shift in perceptual responses to ambiguous auditory stimuli, which was confirmed in a
follow-up imagery-adaptation experiment. These results suggest that parallel neural pathways for mental
imagery provide distinct functions to influence perception. These findings may implicate multiple strategies
for constructing the brain-computer interface.
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Introduction
Perception results from interactions between

bottom-up and top-down processes (Rao and Ballard,
1999; Hochstein and Ahissar, 2002; Friston and Kiebel,
2009; Schroeder et al., 2010; Rimmele et al., 2018). One of
the top-down processes that influence perception is pre-
diction, a process of simulating the environment and es-
timating the sensory input from possible future events
(Bar, 2007; Szpunar et al., 2014; Keller and Mrsic-Flogel,
2018). However, where the prediction is generated in the
brain and how the prediction influences bottom-up pro-
cess to shape perception are still under debate (Aitchison
and Lengyel, 2017).

Mental imagery has been hypothesized to be a predic-
tive process (Moulton and Kosslyn, 2009; Tian and Poep-
pel, 2012). It has been used to investigate the origin and
operations that mediate prediction (Tian and Poeppel,
2010, 2013, 2015; Tian et al., 2016, 2018). The predictive
nature of imagery is manifested by inducing similar rep-
resentation as perception without external stimulation
(Kosslyn et al., 2001; Moulton and Kosslyn, 2009). The
common generation of imagery is via memory retrieval
(Kosslyn et al., 2001; Zatorre and Halpern, 2005; Hub-
bard, 2010; Tian and Poeppel, 2012). Because the move-
ment of articulators causes speech, we proposed another
stream for imagery, motor-based prediction, representa-
tions can be induced by simulating the planned motor
commands and estimating their perceptual conse-
quences (Tian and Poeppel, 2010, 2012).

The dual-stream for generating prediction has been
supported by previous studies (Tian and Poeppel, 2013;
Tian et al., 2016). In a magnetoencephalography (MEG)
study (Tian and Poeppel, 2013), we used imagined speak-
ing (articulation imagery, AI) or imagined hearing (hearing
imagery, HI) to induce motor-based or memory-based
prediction. We found that imagined speaking increased
neural responses to the repeated auditory syllables,
whereas imagined hearing caused suppression. The dif-
ferent directions indicate the distinct modulatory func-
tions in the dual-stream prediction. However, the
modulation effects cannot be easily explained without
assuming parameters that operate in opposite ways,
which contradicts the fact that two types of imagery
should work similarly in nature.

To provide a parsimonious account, we hypothesized
that the precision of induced representation was different
(Tian and Poeppel, 2013; Tian et al., 2016). Because the
articulatory movement uniquely defines the sound, the
motor-based prediction in AI can be very precise. In
contrast, because the memory-based prediction in HI
could be noisy, the induced representation could be less
precise, the neighboring representation could be acti-
vated, similar to the spreading activation model (Collins
and Loftus, 1975; Anderson, 1983). Furthermore, the vary-
ing degrees of representational precision could differen-
tially modulate the sensitivity to sounds and lead to
distinct perceptual after-effects. The precise representa-
tion induced in imagined speaking can specifically in-
crease the gain of repeated sound, whereas the relatively
imprecise representation in imagined hearing can also
increase the gain of neighboring sounds (Fig. 1, inserted
red dashed box). The precise modulation reduces the
lateral inhibition from neighbor neurons and yields repe-
tition enhancement, whereas the increasing gain in all
neighboring sounds causes more lateral inhibition and
results in repetition suppression. That is, we hypothesized
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Figure 1. Illustration of the neural network model and hypothesis
of the distinct top-down modulation effects from two types of
speech imagery. The model contains two layers, the lower layer
representing sensory (acoustic) processing and the upper layer
the phonological analysis. Six nodes are included in each layer
and are separated into two groups based on their phonemic
features. Nodes within a group are fully connected across layers
via excitatory connections (solid arrows), with more weights
(thick) for the connections between nodes of the same syllable.
Lateral inhibition (dashed arrow) is available among nodes in the
same layer. The top-down modulation of speech imagery is
modeled as changes of postsynaptic gain in a given group of
neurons in the phonological layer (inserted dashed red box). The
situation of imagined /ba/ in AI (articulation imagery) or HI (hear-
ing imagery) was used as an example to illustrate the hypothesis.
According to the hypothesis that a more precise representation
would be activated via motor-to-sensory transformation, a more
selectively boost of gain to the imagined syllable (increase of
gain for /ba/ and decrease of gain for its neighbors) would occur
in AI. Whereas in HI, the gains for neighbor syllables would also
increase, making the gain for /ba/ relatively smaller.
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that different types of speech imagery would induce rep-
resentation in distinct levels of precision and interact with
the bottom-up process to shape perception differently.

To test this hypothesis, we built a neural network model
with parameters of postsynaptic gain that were differen-
tially modulated by two types of imagery (Fig. 1). The
model was fitted to previous MEG results, and the best-fit
parameters were obtained to test the hypothesis. Further-
more, the model predicted that two types of imagery
would differentially shift the identification responses to
ambiguous sounds (/ba/-/da/ continuum). We conducted
a behavioral experiment to test how imagery influenced
perception. Previous studies suggest that the degree of
motor engagement constrains the precision of auditory
representation (Oppenheim and Dell, 2008, 2010; Okada
et al., 2018). The release from lip closure in bilabial stop
/b/ is arguably more correlated with the downward jaw
movement than the release from tongue closure in alve-
olar stop /d/. More efforts of movement inhibition in im-
agery /da/ than /ba/ would result in differential perceptual
shifts. In summary, the aim of this study was to investigate
the potential mechanisms that mediated mental imagery
in the context of speech by testing how different types of
mental imagery would modulate speech perception.

Materials and Methods
We first provide an overview of our methods. A two-

layer neural network model was built with free parameters
(modulations of postsynaptic gain) that were differently
tuned by two types of speech imagery. We used this
model to fit our previous MEG data (Tian and Poeppel,
2013) and compared the best-fit values of the free param-
eters with our hypothesis. Next, we added a decision rule
and fitted the free decisional parameters using the base-
line (BL) behavioral results obtained from categorizing the
/ba/-/da/ continuum sounds without the preceding imag-
ery task. After fixing all free parameters, we derived a
quantitative prediction on the shift of psychometric re-
sponse curves to the /ba/-/da/ continuum after two types
of speech imagery. We further conducted a behavioral
experiment. The behavioral results of imagery-induced
perceptual shifts were compared to the model prediction.
In summary, the proposed model was established by
fitting previous MEG neural data and was further tested in
an independent behavioral experiment. In this way, this
study provided strong evidence by connecting neural-
level responses and psychophysics via a computational
account to reveal how different types of speech imagery
work and how they interact with, and shape, perception.

Modeling
Basic unit and processing in the model

We built a two-layer neural network model to simulate
the MEG adaptation results. The structure of this model
was similar to the one in the published study (Huber and
O’Reilly, 2003). Each node is a rate-coded unit with syn-
aptic depression. This node is a simplified point neuron
model, which can be viewed as a group of neurons that
receive and output the same information, abstracting to a
single mathematical point (O’Reilly and Munakata, 2000).
Thereafter we use “neuron” or “node” interchangeably.

The rate-coded output of a neuron, o, is the product of
firing probability, p, and the postsynaptic firing amplitude,
a, as in Equation 1:

o � pa (1)

The update of postsynaptic firing amplitude follows (Eq.
2):

da
dt

� R�1 � a� � Do, (2)

where the synaptic depression rate, D is driven by the
output, o. The recovery rate, R, is governed by the current
status of depression (1-a), so that the recovery term drives
the firing amplitude, a, back to 1.

The firing probability, p, as in Equation 1, is determined
by the differences between the membrane potential of a
neuron, and the firing threshold, �, as in Equation 3:

p � v � �. (3)

Substitute Equation 3 into Equation 1, and the output is
determined by

o � �v � ��a. (4)

The membrane potential, v, updates according to Equa-
tion 5:

dv�t�
dt

� � �i
Ci(Ei � v(t)) , (5)

where � is a time constant indicating the speed of inte-
gration. The variables Ci and Ei represent the conduc-
tance and reversal potential of three channels, excitation,
inhibition, and leak.

Model structure
In this two-layer neural network (Fig. 1), the first layer

represents the acoustic analysis (hereafter termed the
sensory layer, labeled using a superscript letter “s”), and
the second layer provides a more abstract phonological
analysis (hereafter the phonological layer, labeled using a
superscript letter “p”). In each layer are six nodes repre-
senting the processing of different syllables. Based on the
common features of syllables, three nodes were grouped
together to represent syllables /ba/, /da/, and /ga/. The
other group of three nodes represent syllables /pi/, /ti/,
and /ki/. The nodes in the first and second layers within a
group are fully connected. The connection strength value
wij (from neuron j to i) is 1 for the connections between the
same syllable nodes in different layers, and 0.22 for con-
nections between different syllable nodes. There are no
connections between nodes across groups.

The signals from one neuron to another are obtained by
multiplying the output, o, with the connection strength
between the two neurons. These signals are summed
over all input with other sources such as inhibition and
leaking. By specifying the summation between and within
layers and expanding from (Eq. 5), we obtained the com-
plete updated equation for membrane potential of unit i at
level n (Eq. 6):
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dvi
n�t�

dt
� �n��1 � vi

n� �j wijoj
n�1 � vi

n�L � I �k ok
n�� . (6)

The member potential of neuron i at layer n, vi
n, is

updated according to the integration rate (time constant)
of that layer ��n� summing over three sources of input. The
first input is an excitatory input from the n–1 level via
bottom-up connection strength wij. The excitatory rever-
sal potential Ee is set to be 1, so that this bottom-up input
drives the membrane potential to 1 (governed by the
multiplier of 1-v). The second input is the leak with the
fixed term L. The third input is the lateral inhibition, which
is the strength of I multiplied by the sum of output t from
k units at level n. The combination of the leak and lateral
inhibition drive the membrane potential toward 0 because
the reversal potential of Ei and El are set to 0 (as the term
in the bracket is multiplied by -v). The fixed parameters
are similar to those used in a previous study (Huber and
O’Reilly, 2003) and listed in Table 1.

Modeling top-down modulation
The top-down modulation effects of imagery were mod-

eled as a gain parameter gi multiplying by the bottom-up
input in the phonological layer of the nodes in the group of
imagined syllable. Specifically, extending from Equation 6
by adding the gain parameter g that modulates the
bottom-up input results in Equation 7:

dvi
p�t�

dt
� �p�gi�1 � vi

p�GA �j wijoj
a � vi

n�L � I �k ok
p�� .

(7)

That is, according to the types of imagery and content,
updating of the membrane potential of the node i at the
phonological layer is subject to modulation of the gain
parameter gi over the bottom-up input from the acoustic
layer. These gain parameters can be considered as the
sensitivity to one unit of total input from the lower layer.
Based on the imagery type and imagery content, the
modulation factor could increase the gain for the imag-
ined syllable, but decrease or increase with smaller mag-
nitude for the neighbor syllables; no effects over syllables
were observed in the other group. The key assumption
that distinct precision of representation in two top-down
induction streams was modeled as the different modula-
tion rates of postsynaptic gain (Fig. 1, inserted red dashed
box). The AI task, because of the more precise represen-
tation of imagined syllable, would induce a positive shift in
the gain for imagined syllables and a negative shift in gain
for the neighbor syllables. In contrast, the HI task, be-

cause of noisier representation that led to activation of the
representation of neighbor syllables, would induce a pos-
itive shift of the gain for all syllables in the group, but
slightly more for the imagined syllable. The relatively
greater boost of gain for the imagined syllable in AI would
yield repetition enhancement as observed in our previous
MEG study, whereas the relative smaller boost and pos-
itive shift of gain for the neighbor syllables in HI would
induce more lateral inhibition and result in repetition sup-
pression for the imagined syllable.

Moreover, the imagery tasks were assumed to increase
attention to the subsequent sound, and different types of
imagery may induce the attentional effect differently.
Therefore, we model the attentional effect by adding an-
other free parameter, GA, which was applied to all neurons
and raises the gain ubiquitously for all syllables. In total,
there were six free parameters in two types, imagery
modulation (gi, two for each imagery task) and attentional
modulation (GA, one for each imagery task).

Fitting the modulation of gains with the MEG results
The free parameters of gain modulation in the model

were fitted using the MEG results of imagery-induced
repetition effects (Tian and Poeppel, 2013). The simulation
was conducted in three stages. The first stage simulated
the neural auditory responses to the syllables without
repetition. During this stage, the free parameters of mod-
ulation gain were not included. The external stimuli were
input to one of the neurons representing either /ba/ or /ki/,
for 500 ms. The simulated neural responses were used as
a BL and later subtracted from the responses after repe-
titions. Next, in the following two stages, free parameters
of modulation gain were included, as in Equation 7, to
simulate the neural responses after the AI and HI tasks. In
the repeated condition of each task, the 500-ms duration
external stimuli were provided as input to a given neuron
in the first layer. The same group of neurons in the second
layer was modulated by the gain parameters. In contrast,
in the novel condition of each task, the gain modulation
was applied to the group of neurons that did not contain
the neuron receiving the external input in the first layer.

The output from all neurons at the phonological layer
was summed to obtain the dynamics of simulated neural
responses. Five waveforms were obtained, separately for
auditory responses without repetition (BL), as well as
responses after AI or HI in either repeated (AI repeated or
HI repeated) or novel (AI novel or AI repeated) conditions.
A temporally averaged measure was obtained in a 25-ms
time window centered around the peak latency for each
waveform. The simulation of repetition effects was calcu-
lated separately for the repeated and novel conditions in
AI and HI, and it was quantified by the percentage change
� (task-condition – BL)/BL. The six free parameters of
imagery modulation and attentional modulation were fit-
ted by minimizing the distance between the four simu-
lated percentage changes and the empirical MEG results.

Generating prediction of imagery-biased perception to
the /ba/-/da/ continuum

After fitting the MEG results, we fixed the free param-
eters of modulation gain. We further derived specific pre-

Table 1. Fixed parameters in the neural network model

Label Description Value
L Leak strength 0.30
I Inhibition strength 0.15
� Firing threshold 0.15
D Depletion rate 0.324
R Recovery rate 0.022
�s Time constant in the acoustic layer 0.031
�p Time constant in the phonological layer 0.01
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dictions concerning how the top-down processes could
modulate behavior. A behavioral experiment of syllable
identification was conducted to test the model prediction.
In this experiment, participants were asked to identify
syllables in the ambiguous auditory stimuli of /ba/-/da/
continuum, with or without performing a preceding imag-
ined speaking or imagined hearing task (see the next
section for the experimental procedure). The perceptual
response changes as a function of imagery types were
quantified and compared to the model prediction, hence
further testing the mechanisms of differential gain modu-
lation for different types of imagery tasks.

To link the simulated neural output with behavioral
responses, a decision rule was applied as in Equation 8:

p�c� �
eN�tc’�tc�

1 � eN�tc’�tc�
� Bc. (8)

That is, the percentage of choice, p�c�, is the logistic
function given by the differences between the peak la-
tency of output from the neuron of the alternative syllable,
tc=, and of the choice syllable, tc, in the phonological layer.
Because human scalp electrophysiology (EEG/MEG) re-
flects the accumulation of underlying neural activity over
time, the peak latency of a waveform response indicates
the time that an accumulator reaches a threshold. There-
fore, we used the peak latencies from two competing
nodes to quantify the proportion of choices. A decision
noise parameter, N, was assumed to reduce the perfor-
mance. Another parameter of decision bias toward the
choice, Bc, was added to account for the overall shift
across all levels of stimuli.

The two free parameters, decision noise, N, and bias,
Bc, were fitted using the psychometric curve of responses
to the /ba/-/da/ continuum. The first 100-ms input to the
neurons in the sensory layer was determined by the phys-
ical differences among the levels of the /ba/-/da/ contin-
uum stimuli. The first (most /ba/-like) and seventh (most
/da/-like) stimuli had an input of 1 to /ba/ and /da/ neuron,
respectively. For the fourth (middle, most ambiguous)
stimulus, the input was set to 0.5 to both /ba/ and /da/
neurons. The input of the levels between the extreme and
middle levels was determined proportionally according to
the levels. That is, the second and third levels had inputs
to the /ba/ neurons of 0.833 and 0.667 and to the /da/
neurons of 0.167 and 0.333, respectively. The fifth and
sixth levels switched the proportion between the input to
/ba/ and /da/ neurons to mirror those for the second and
third levels. For the next 200 ms, the input represented the
same vowel/a/, so that the input was 0.5 for both /ba/ and
/da/ neurons.

The neural output waveform was obtained by running
the simulation using the fixed parameters without the
modulation gains in the neural network model. The peak
latencies of output from the phonological layer /ba/ and
/da/ neurons were identified for each level of input. The
two free parameters, decision noise, N, and decision bias,
Bc, were fitted by minimizing the distance between the
simulated percentage of choice based on Equation 8 and

the actual behavioral results of the psychometric curve of
responses to the /ba/-/da/ continuum.

After fixing the free parameters in the decision rule, we
generated the prediction of choice shifts to the /ba/-/da/
continuum after different types of imagery. The neural
output waveform to different levels of the /ba/-/da/ con-
tinuum after either the AI or HI tasks was obtained by
running the input of corresponding ambiguous levels
through the neural network with fixed modulation gains for
a given imagery task. The percentage of choice for each
level in each task was obtained by the identified peak
latencies using Equation 8 with the fixed parameters of
decision noise, N, and decision bias, Bc. That is, the
prediction of choice shifts after different types of imagery
was generated without free parameters. This model pre-
diction was compared with the behavioral results to test
the model of modulation gain by different types of imag-
ery.

Behavioral experiment: imagery-induced perception
shift and testing model prediction
Participants

Twenty-two participants were recruited from East China
Normal University, and three of them were excluded. Two
participants were excluded because of abnormal perceptual
boundaries in the pretest (no differences among responses
to different levels of /ba/-da/ continuum stimuli), and the
third participant was excluded because this participant
could not follow instructions and confused the AI task with
the HI task (self-reporting of having difficulty separating
two types of speech imagery). In total, nineteen partici-
pants were included in this study (10 females, average
age of M � 22.58 and SD � 2.39). All participants were
right-handed and received monetary incentives for their
participation. This experiment was approved by the local
institutional review board at New York University Shang-
hai. Written consent was obtained from each participant.

Materials
Pictures of a mouth and an ear were used as visual cues

to indicate two different imagery conditions. Each image
was presented foveally against a white background. The
mouth picture indicated the AI condition and the ear the
HI condition. One of two syllables, /ba/ and /da/, was
placed at the center of the pictures to indicate the content
of the imagery task in each condition.

A seven-level /ba/-/da/ continuum, synthesized using
Praat software (Boersma, 2002), was used as the auditory
stimuli in this experiment (Fig. 2). Specifically, the onset
frequency of F2 ranged from 1150 to 1450 Hz with an
equal step of 50 Hz, whereas the onset frequency range of
F3 was 2179–2350 Hz with a step of 28.5 Hz. The F1 was
750 Hz in all seven levels of stimuli. The stimuli were first
created in a male voice with F0 of 120 Hz at 0.03 s, 130 Hz
at 0.078 s, and 110 Hz at 0.27 s. Another set of stimuli in
a female voice was created from the male voice stimuli
using the function of “change gender” in the Pratt soft-
ware. The formant shift ratio was set to 1.05, and the pitch
median was set to 220. The female voice stimuli had a F0
of 218 Hz at 0.03 s, 236 Hz at 0.078 s, and 199 Hz at 0.27
s. The duration of all auditory stimuli was 300 ms. The
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intensity of stimuli was adjusted to a comfortable label for
each participant, and it was kept consistent within each
individual for all stimuli. The intensity ranged from 78- to
84-dB SPL across participants. These auditory stimuli
were delivered through Sennheiser HD 280 Pro head-
phones. The experiment was conducted with Psychtool-
box in MATLAB (version 2016b).

Procedure
Three conditions were included in this experiment, AI,

HI, and BL conditions. A sample trial is depicted in Figure
2B. In the imagery conditions (AI and HI), a visual cue (a
picture of a mouth for AI and a picture of an ear for HI) was
presented for 1200 ms. A written syllable, either a “ba” or
“da,” was superimposed on the visual cue to indicate the
speech content in the imagery tasks. During the duration
of the visual cue presentation, participants were asked to
imagine saying the indicated syllable in the AI condition or
hearing someone else say that syllable to them in the HI
condition. In the HI condition, participants were required
to imagine hearing a voice that was opposite to their own
gender. After the offset of the visual cue, a fixation with a
duration ranging from 500 to 1000 ms appeared, followed
by one of the seven levels of auditory stimuli. The gender
of the auditory stimulus was also opposite to the gender
of the participants’. A visual prompt indicating the per-
ceptual judgment task followed. Participants were asked
to judge whether the preceding sound was /ba/ or /da/ by
pressing either key “0” or “1.” The mapping between
choices and buttons was counterbalanced across partic-
ipants. In the BL condition, a similar procedure was im-
plemented with the exception that no visual cue was
presented. Participants in the BL condition passively lis-

tened to the auditory stimuli and made a perceptual de-
cision without any preceding imagery tasks.

Each condition was presented in a separate block. The
block order was randomized. In each block, 252 trials
were included with 36 trials for each of the seven levels of
the /ba/-/da/ continuum stimuli. In the imagery conditions
(AI and HI), participants were required to generate a men-
tal imagery of /ba/ in half of the trials, and /da/ in another
half. The presentation order of imagery content and audi-
tory stimuli were randomized.

In the AI condition, participants were told to imagine
saying /ba/ or /da/ without moving any articulators or
producing any sounds. Instead, they were asked to gen-
erate the kinesthetic feeling of the articulator movement
for a specific pronunciation and to generate the experi-
ence of their own voice loud and clear in their mind. In the
HI condition, participants were asked to imagine hearing
another person say the /ba/ or /da/ sound to them, while
minimizing any kinesthetic feeling of movement. We did
not obtain EMG recordings from around the larynx to
objectively control for possible subvocalizations. Instead,
we placed a microphone close to the participants’ mouth
throughout the experiment and did not find any noticeable
pronunciation. As long as no overt sound was produced
and it was consistent across conditions, the perceptual
changes observed in the study were not contaminated by
the overt production.

To strengthen the memory process in HI, a familiariza-
tion phase was conducted only in the HI condition. Par-
ticipants saw a picture of an average male or female face
and listened to the /ba/ and /da/ sounds that were oppo-
site to their gender three times each. Participants were
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Figure 2. Auditory stimuli and experimental procedure. A, Schematic plots of formant transition in each level of the /ba/-/da/
continuum. B, Experimental procedure. A sample trial in the imagery conditions is depicted. At the beginning of the trial, a visual cue
was presented for 1200 ms. The visual cue included either a picture of a mouth or an ear that indicated the following imagery tasks
(AI or HI, respectively). A written syllable (either ba or da) was superimposed on the picture to indicate the content of the imagery
tasks. Participants were asked to perform the imagery tasks during the duration of the visual cue presentation. After the offset of the
visual cue, a fixation with a random duration ranging from 500 to 1000 ms appeared, followed by one of the seven levels of /ba/-/da/
continuum auditory stimuli. Participants were required to provide a perceptual judgment. The BL condition consisted of a similar
procedure with the exception that no visual cue was presented and participants were not required to perform any imagery tasks
before identifying the auditory syllable.
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told that the person on the screen produced those
sounds. The familiarization phase was repeated after ev-
ery 42 trials to help participants retain their memories
during the HI phase. The opposite gender was used to
better distinguish the internal voice in HI from their own
voice. These manipulations aimed to selectively elicit the
motor-induced auditory representation in AI and auditory
memory in HI.

Analyses
Both response choice and reaction time (RT) were sub-

ject to a two-way repeated measures ANOVA with factors
of task conditions (three levels) and sound levels (seven
levels), followed by post hoc one-way repeated measures
ANOVA with factors of task conditions at each sound
level. To directly test the main hypothesis on the differen-
tial modulation effects of AI and HI, a two-way repeated
measures ANOVA with factors of task conditions (two
levels: AI and HI) and sound levels (seven levels) was
conducted out. Post hoc t tests between imagery condi-
tions were conducted at each level of sound.

�2 Goodness-of-fit tests were conducted to statistically
test the model fittings to the MEG repetition effects, the
modeling fitting to the BL perceptual responses, and the
similarity between the model predictions and behavioral
results of imagery modulation.

Code accessibility
The code described in the paper is freely available

online at https://github.com/xtian0628/ImgMod.git. The
stimuli, behavioral data, and code are available as Ex-
tended Data 1.

Results
Fitting of top-down modulation MEG data

The output from the phonological layer was obtained in
different imagery conditions, as shown in Figure 3A. To
further quantify the imagery-induced repetition effects,
the temporal average responses around the peak latency
of simulated neural activity was obtained in each condi-

tion. The response strength change (in percentage) rela-
tive to the BL response was calculated and compared to
the empirical MEG results (Fig. 3B).

The model simulation results were fitted with the actual
MEG results and captured the repetition enhancement
and suppression in AI and HI, respectively (�2 goodness
of fit test, �2(3) � 0.024, p � 0.99; the insignificance
suggested no differences between the empirical and
model results and hence a good model fit; Fig. 3B). More-
over, the parameters of gain modulation for the best-fit
results (Fig. 3C) showed a similar profile as predicted (Fig.
1, inserted red dashed box). The postsynaptic gain in-
creased for the imagined syllable but decreased for neigh-
bor syllables in AI, whereas the gain increased for all
syllables for HI. The best-fit values for all free parameters
are listed in Table 2.

Model fitting of behavioral responses to the /ba/-/
da/ continuum and predictions of imagery
modulation

To generate predictions about behavioral responses
from the neural network, we first examined the behavioral
responses to the /ba/-/da/ continuum in the BL condition
and fitted the decision rule using these behavioral re-
sponses without modulation of imagery. A psychometric
curve was obtained for the categorization responses to
the /ba/-/da/ continuum (Fig. 4A). A one-way repeated
measures ANOVA revealed significant differences among
the seven levels of /ba/-/da/ continuum auditory stimuli
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Figure 3. Simulation results of MEG imagery-induced repetition effects. A, Model output of waveform responses. The simulated
waveform responses in each condition have similar peak latencies of �200 ms after the auditory stimulus onset, consistent with the
MEG results of observed effects in the M200 component (Tian and Poeppel, 2013). B, Model simulation results of MEG imagery-
induced repetition effects. The bar plots are repetition effects adapted from the MEG study (Tian and Poeppel, 2013). The stars
represent the simulation results in each condition. The simulation captures the repetition enhancement in AI (repeated � novel) as well
as the repetition suppression in HI (repeated � novel). C, The values of the free parameters for best model fitting. The postsynaptic
gain increases for the imagined syllable but decreases for neighbor syllables in AI, whereas the gain increases for all syllables for HI.
These results of distinct gain modulation in different imagery tasks are consistent with the hypothesis in Figure 1.

Table 2. Best-fit values of free parameters for the MEG rep-
etition effects

Label Description Value
grepeated, AI Synaptic gain for the repeated syllable in AI 1.200
gnovel, AI Synaptic gain for novel neighbor syllables in AI 0.899
grepeated, HI Synaptic gain for the repeated syllables in HI 1.157
gnovel, HI Synaptic gain for novel neighbor syllables in HI 1.027
GA, AI Attentional gain in AI 1.088
GA, HI Attentional gain in HI 1.119
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(F(6,18) � 100.23, p � 0.001). These results indicated that
a standard psychometric curve that reflected the percep-
tual categorization was obtained. Moreover, the model,
after adding a decision rule, could fit the psychometric
curve (�2(6) � 1.38, p � 0.97; the insignificance sug-
gested no differences between the empirical and model
results and hence a good model fit; Fig. 4A). The best-fit
values of free decisional parameters were decision noise,
N � 0.0193, and decision bias to the choice, Bc � 0.0469.

More importantly, by taking the neural output after im-
agery modulation, predictions of behavioral responses to
the /ba/-/da/ continuum were generated. Specifically, the
model predicted that the psychometric curve would shift
upwards for both types of speech imagery, but the posi-
tive shift would be greater after imagined speaking (AI)
than after imagined hearing (HI; Fig. 4A).

Behavioral results of imagery modulation and
comparison with model predictions

Next, we tested the predicted imagery modulation ef-
fects on perceptual categorization. Because motor in-
volvement can affect the strength of the representation
established in speech imagery (Oppenheim and Dell,
2008, 2010; Okada et al., 2018), the imagery of /ba/ and
/da/ could have different degrees of modulation effects
based on the number of articulatory movement needed to
be inhibited during imagery, /ba/ for one (jaw movement)
and /da/ for two (jaw and tongue moving). Therefore, the
imagery of /ba/ could have stronger effects than that of
/da/. First, we conducted a three-way repeated measures
ANOVA with factors of stimulus-level, imagery task, and
imagery token (ba or da). Significant main effects were
found for all three factors, stimulus-level (F(6,108) � 197.18,
p � 0.001), imagery task (F(1,18) � 10.65, p � 0.004), and

imagery token (F(1,18) � 13.61, p � 0.002). More impor-
tantly, the two-way interaction between the imagery token
and imagery task was significant (F(1,18) � 5.66, p �
0.029), as was the interaction between imagery task and
stimulus-level (F(6,108) � 3.53, p � 0.003). These signifi-
cant interactions suggest that the content in the preced-
ing imagery task greatly influenced the modulation effects
of different types of imagery on perception. Therefore, we
separated the imagery of /ba/ and /da/ in further analyses.

We first tested the modulation effects in the imagery
tasks with the imagery content of /ba/. A two-way re-
peated measures ANOVA was conducted with two factors
of task conditions (three levels) and sound levels (seven
levels). The results showed significant main effects both
for task conditions (F(2,36) � 9.558, p � 0.001, �2 � 0.347)
and sound levels (F(6,108) � 169.963, p � 0.001, �2 �
0.904). More importantly, the interaction was also signif-
icant (F(12,216) � 2.610, p � 0.003, �2 � 0.127). To assess
the interaction, post hoc one-way repeated measures
ANOVA was conducted among the task conditions for
each level of auditory stimuli. Significant differences
among task conditions were found at sound levels 2
(F(2,18) � 4.676, p � 0.016), 3 (F(2,18) � 4.808, p � 0.014),
4 (F(2,18) � 8.154, p � 0.001), 5 (F(2,18) � 6.250, p � 0.005),
and 7 (F(2,18) � 3.394, p � 0.045).

A similar two-way repeated measures ANOVA was con-
ducted for the RT with two factors of task conditions
(three levels) and sound levels (seven levels). The results
showed that the main effect of sound levels was signifi-
cant (F(6,108) � 15.820, p � 0.001, �2 � 0.048), but not for
the task conditions (F(2,36) � 0.630, p � 0.538, �2 �
0.014). The interaction between them was significant
(F(12,216) � 1.954, p � 0.03, �2 � 0.009). A post hoc test
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Figure 4. Model predictions and behavioral results. A, Model fitting of the behavioral responses to the /ba/-/da/ continuum without
imagery modulation and predictions of imagery modulation effects after imagery of /ba/. The psychometric curve of switching
percepts from ba to da as a function of the stimulus level was obtained (solid black line and dots). The neural network model captured
the behavioral responses by fitting two additional free parameters in the decision rule (the model fit is represented as the black dashed
line). After fixing all free parameters, the model generated predictions about the imagery modulation after imagery of /ba/ (color
dashed lines). Specifically, both types of imagery would have a positive shift in the psychometric curve, and the AI (red dashed line)
would shift more than that of HI (green dashed line). B, Behavioral results of imagery-induced modulation on the responses to the
/ba/-/da/ continuum for the imagery content of /ba/. The psychometric curved in AI (solid red line and dots) showed a more positive
shift than that of HI (solid green line and dots). The asterisk represent the significant difference between conditions in the experimental
results at stimulus level 5 (p � 0.01). The model predictions (identical to those in A) were superimposed and consistent with the
observation. C, Behavioral results after imagery of /da/ and model fitting. Behavioral results of imagery-induced modulation on the
responses to the /ba/-/da/ continuum for the imagery content of /da/. The psychometric curved in AI (solid red line and dots) showed
no significant difference from that of HI (solid green line and dots). The model fitted these results by adjusting the gain modulation
(model fitting in dashed line). In each plot, the shaded areas around each line represented the �SEM in each condition.
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did not reveal any significance among task conditions at
any level of sound stimuli, suggesting that the RT for
selection of choice in different conditions did not differ.

To directly test the model prediction on modulation
differences between AI and HI (Fig. 4B), we conducted a
two-way repeated measures ANOVA by including only the
AI and HI conditions. The results revealed significant main
effects both on task conditions (F(1,18) � 14.13, p � 0.001,
�2 � 0.01) and sound levels (F(6,108) � 138.51, p � 0.001,
�2 � 0.753). The interaction was also significant (F(6,108) �
3.52, p � 0.003, �2 � 0.007). Post hoc comparisons
showed significant differences between the AI and HI
condition at sound level 5 (t(19) � 4.236, p � 0.004). That
is, participants who imagined speaking the syllable /ba/
had a higher chance of perceiving the following ambigu-
ous stimuli as /ba/ than that when imagining hearing the
same syllable. More importantly, the behavioral results of
imagery adaptation were consistent with the model pre-
diction (for AI, �2(6) � 2.02, p � 0.92; for HI �2(6) � 5.92,
p � 0.43; Fig. 4B). The consistency between the model
prediction and empirical results suggested that the vary-
ing precision of representation induced by the two types
of imagery led to the distinct modulation of perceptual
responses to ambiguous sounds.

A similar two-way repeated measures ANOVA was con-
ducted for RT with two factors of task conditions (two
levels, AI and HI) and sound levels (seven levels). The
results showed a significant main effect of sound levels
(F(6,108) � 13.04, p � 0.001, �2 � 0.079), but neither the
main effect of task conditions (F(1,18) � 2.34, p � 0.144, �2

� 0.019) nor the significant interaction (F(6,108) � 1.24, p �
0.292, �2 � 0.005), which suggested that the observed
choice results could not be explained by the speed-
accuracy trade-off.

When the content of imagery tasks was the syllable
/da/, the results showed that the perception /ba/-/da/
continuum was not different among the AI, HI, and BL
conditions (Fig. 4C), as the main effect of task conditions
was not significant (F(2,36) � 2.06, p � 0.142, �2 � 0.003).
The main effect of sound level was still significant (F(6,108)

� 220.126, p � 0.001, �2 � 0.809), and there was a
significant interaction between task conditions and sound
levels (F(12,216) � 1.924, p � 0.033, �2 � 0.005). However,
post hoc tests did not reveal any reliable differences
among conditions at any of the seven sound levels. For
the RT results, only a main effect of sound levels (F(6,108) �
5.527, p � 0.001, �2 � 0.023) was found. The main effect
of task conditions (F(2,36) � 0.519, p � 0.600, �2 � 0.0142)
and the interaction (F(12,216) � 0.851, p � 0.598, �2 �
0.004) were not significant.

We first used fixed parameters to fit the empirical re-
sults of imagery /da/. The �2 goodness-of-fit test revealed
significant differences between the model results and the
empirical results (for AI, �2(6) � 12.87, p � 0.045; for HI
�2(6) � 16.09, p � 0.013). These results suggested that
the fitted parameters for imagery /ba/ could not automat-
ically capture the imagery /da/ results, which was consis-
tent with our hypothesis that the inhibition of different
degrees of motor involvement in imagery /ba/ and /da/
influences the precision of induced representation.

Next, we fitted the empirical results of imagery /da/ by
adding two free parameters, Sgi to scale the modulation
gain and SGA to scale the attentional gain. The Sgi pro-
portionally scales the gain for both imagined and neigh-
boring syllables [�gi � – Sgi � (gi – 1)]. In this way, the
tuning of the modulation can be changed. SGA is a mul-
tiplier that changes the attentional gain (GA’ � SGA�GA).
By scaling the modulation gain, the model can fit the
behavioral results of imagery /da/ (for AI, �2(6) � 4.483, p
� 0.612; for HI �2(6) � 7.034, p � 0.318; Fig. 4C). More
importantly, the best-fit parameters were consistent with
our hypothesis. For AI, the best-fit scaling parameters
were SgAI � 0.9056 and SGA,AI � 1.5328, whereas for HI,
SgHi � 0.1063, SGA,HI � 1.4344. These results showed
that the modulation gain for the imagery /da/ was scaled
down from the fitted values of imagery /ba/. The scaling
down was greater in the AI task than the HI task. These
results were consistent with our hypothesis that imagery
/da/ would induce a less precise representation because
of the inhibition of greater motor involvement, compared
to imagery /ba/.

Discussion
A neural network model with a built-in gain modulation

from different types of imagery successfully captured the
different directions of repetition effects observed in a
previous MEG study. The simulation results showed that
the AI sharpened the gain more than HI. In the behavioral
experiment of categorizing /ba/-/da/ continuum sounds,
AI induced a greater choice shift in the preceding imag-
ined syllable than HI. This positive perceptual shift was
predicted by the model. Both the simulation and behav-
ioral results were consistent with our hypothesis that
motor-based speech imagery can induce a more precise
auditory representation than memory-based imagery,
which resulted in a differential influence on speech per-
ception.

Our results provide evidence suggesting the origins and
representational format of prediction. Mental imagery is
assumed to be a predictive process by inducing repre-
sentation without external stimulation (Moulton and Koss-
lyn, 2009; Tian and Poeppel, 2012). The model fitting
results of different tuning in modulation gain suggest that
predictions can be distinctively generated from motor and
memory pathways. Moreover, more sharpened tuning in
AI suggests a functional advantage of induction precision
via the motor-based route.

More importantly, our results shed light on how the
prediction operates and shapes perception. Previous
studies of mental imagery have been mostly focused on
the representational question, how similar are the repre-
sentations induced by imagery compared to perception
(Kosslyn et al., 1999; O’Craven and Kanwisher, 2000; Tian
and Poeppel, 2010; Pearson and Kosslyn, 2015). This
study, in contrast, extends to the computational question,
what processes link imagery and perception. We hypoth-
esized that prediction interacted with bottom-up pro-
cesses via the modulation of gain along the perceptual
hierarchy. Our proposed mechanisms are consistent with
the theory from a Bayesian perspective (Aitchison and
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Lengyel, 2017). The prediction serves as a prior and mod-
ulates the likelihood generated from the bottom-up pro-
cess to yield the posterior as results of perception. Our
model and results agree with this integrative view that
contrasts with the subtraction approach in the predictive
coding (Friston, 2010) and active sensing (Morillon et al.,
2015) theory, suggesting that the interaction between
top-down and bottom-up processes may be mediated by
multiple mechanisms.

The distinct behavioral results in conditions of different
imagery content (/ba/ or /da/) further suggest that motor
engagement constrains the precision of induced auditory
representation. The pronunciation of /ba/ is physically
realized by the movement of lips and jaw, whereas the
articulation of /da/ involves the movement of tongue in
addition to the jaw. The lip movement in /ba/ is arguably
more correlated with the jaw movement, compared with
the correlation between the jaw movement and the
tongue movement in /da/. During imagery, one require-
ment is for the articulators to refrain from moving. There-
fore, more efforts of movement inhibition would be in the
imagery of /da/ compared with the imagery of /ba/. This
greater inhibition of motor system during imagery of /da/
may induce a less precise representation than that of /ba/,
and hence, a less positive shift was observed in the
imagery of /da/. Our behavioral and simulation results
(Fig. 4B,C) were consistent with this hypothesis as well as
previous findings that motor involvement during imagery
determines the precision and levels of induced represen-
tation (Oppenheim and Dell, 2008, 2010; Tian and Poep-
pel, 2013, 2015; Okada et al., 2018; Tian et al., 2018).

The model successfully explained the MEG results of
distinct modulation directions caused by two types of
imagery, which established the proposed mechanisms in
a quantitative way. More importantly, it generated novel
predictions that were more informative to test hypotheses
than explaining existing data. After fixing all free parame-
ters, we tested this model again by using a procedure that
was orthogonal to the MEG experiment. We used new
acoustic input to generate prediction at a new level (be-
havioral rather than neural level), and we tested this novel
prediction using an independent dataset (distinct types of
imagery modulate the psychometric curves of percep-
tion). In this way, our study provides strong evidence that
supports a new computational account on how different
types of speech imagery work and how they interact with
and shape perception, the crucial aspect of computation
in addition to the representation of mental imagery. More-
over, our study provides a mechanistic connection be-
tween neural-level and psychophysics, contrasting with
previous studies on mental imagery.

The model trained on the neural data could predict the
shifts in the psychometric curve after imagery /ba/. How-
ever, the fitted parameters could not reproduce the be-
havioral results in conditions of imagery /da/, suggesting
that fitting the modulation in neural responses does not
automatically lead to the results of the behavioral modu-
lation. After adding a scaling parameter that adjusted the
modulation gain, the model could fit the behavioral results
of imagery /da/. The fitting results for imagery /da/ re-

vealed that the modulation gain was scaled down com-
pared with that under conditions of imagery /ba/. The
scaling down was more prominent for the AI task com-
pared with the HI task. These results suggest that in the AI
task where motor-to-sensory transformation is required,
the inhibition of motor involvement in the imagery task
limits the precision of the induced representation. In con-
trast, in the HI task, which relies more on memory re-
trieval, the differences in motor involvement between
syllables did not influence the precision of induced rep-
resentation.

Attention could be a factor that mediates the observed
perceptual shift differences between imagery tasks. How-
ever, two reasons make the attention less likely to be a
confounding variable in our study. First, we informed
participants that the auditory stimuli were randomly pre-
sented. There was no relation between what was imag-
ined and the subsequent sound. They were asked to
judge the sound solely based on what they heard. In
contrast, a sound always followed the imagery task.
Therefore, the potential attentional effect was more likely
to be a temporal one, facilitating the initiation and pro-
cessing of all sounds. We modeled the attention effect as
a general modulation gain to all nodes. Second, an equal
amount of attention would be induced in both imagined
contents of /ba/ and /da/. However, we observed differ-
ences between the behavioral results when participants
imagined different syllables, which highlights that motor
involvement constrains the precision of the internally gen-
erated representation. Therefore, the observed results
cannot be easily explained by different attentional levels
between imagery tasks.

One of the difficulties in imagery studies is the lack of
objective measures, especially in the auditory domain. In
our previous studies, we attempted various designs, in-
cluding a chronometric procedure (Tian and Poeppel,
2010) and repetition paradigms to “covert” the unobserv-
able imagery to observable perceptual responses (Tian
and Poeppel, 2013, 2015; Tian et al., 2018). The observed
positive effects in the previous studies provide confidence
that participants are engaged in imagery. Similarly, par-
ticipants in this study were native to our hypothesis, yet
we observed significant behavioral differences between
conditions with different types of imagery, which suggests
that the observed behavioral effects were most likely
caused by imagery processes.

Our model simulation and behavioral results demon-
strate that different types of mental imagery can distinc-
tively modulate the neural and behavioral perceptual
responses. This converging evidence suggests that men-
tal and neural representation can be predicted and con-
structed internally without external stimulation via motor-
based and memory-based pathways. The precision of
internally constructed representation is determined by the
nature of induction processes, a more precise represen-
tation can be induced by the motor-based process com-
pared with the memory-based process. The differential
precision levels of internally constructed representations
can distinctively tune the sensory gain and shape percep-
tion.
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